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Abstract: A general class of ir-network hydrocarbons that includes the possibility of dangling <r-bonds at carbene centers in 
the ir-network are investigated theoretically. Several semiempirical approaches are treated: the simple valence-bond model, 
a "modified" molecular-orbital scheme, and complete configuration interaction calculations on Parisier-Parr-Pople-type models. 
Often these three approaches agree with one another in the prediction of ground-state spin S, as well as with experiments 
when available. We find that for alternant 7r-networks a very simple rule seems to accurately predict the value of 5. 

I. Introduction 
Interest in high-spin hydrocarbons seems to be continually 

developing.1 Experimentally there has been2"5 some success in 
synthesizing and studying these nonclassical compounds. Species 
with spin as great as S = 4 (i.e., nonet spin multiplicity) have been 
prepared.5 There have also been several theoretical ideas de
veloped4,5"12 to help identify such possible species. In addition 
there have been numerous quantum chemical calculations8,10"16 

for individual molecules and polymer chains, including some8,16 

accurate ab initio configuration interaction (CI) calculations. 
Several theoretical rules of note have been developed7-12 to 

predict the ground-state spin 5 of conjugated ir-systems. In one 
simple approach, Hiickel theory is supplemented with Hund's 
(first) rule to make predictions, but this evidently sometimes 
overestimates8"11 5. For this, modified molecular-orbital (MO) 
arguments have been developed8"10 that recognize that Hund's 
rule is ineffective for exchange coupling between two singly oc
cupied orbitals when little differential overlap occurs. In an 
alternative approach7,11,15 the simple valence-bond (VB) model 
for carbon 7r-networks has also been investigated. For this VB 
model, Ovchinnikov7 conjectured that the ground-state spin for 
"alternant" networks is simply half the difference between the 
number of "starred" and "unstarred" sites. Later it was noted1' 
that this17 and several other results18 may be rigorously proved. 
Often this simple VB result agrees with the modified MO approach 
(involving some analysis of the nonbonding MO's) as well as with 
more accurate complete CI computations on Parisier-Parr-Pople 
(PPP) models, extensive ab initio CI computations, and experi
ment. Thus it seems appropriate to explore more fully such simple 
arguments and VB models, as we do here for a wider class of 
alternant hydrocarbons that include some nonbonded (i.e., singly 
occupied) <r-orbitals. 

A natural extended class is that of ir-conjugated networks 
including carbene centers. Indeed several such species have long 
been known, there being several reviews both on the experimental19 

and theoretical20 sides. Most of this work has focused on single 
carbene centers (independently of whether it was associated to 
a ir-network) and the reactions they undergo. Studies from the 
groups of Itoh2,5,21 and Iwamura5 and of Wasserman22,23 seem to 
provide the primary examples of systems such as will be em
phasized here as high-spin candidates. An example of a very 
simple carbene species is shown in Figure 1, where only the a-
bonds are explicitly indicated; four valence electrons remain to 
be distributed amongst the dangling a-orbital of the central carbon 
and the three ir-orbitals of the carbons. In the absence of ligands 
of rather different electronegativity it seems20 likely that the ground 
state is dominated by configurations in which the dangling a-
orbital on the carbene centers is singly occupied. This presumption 
is made for the species considered here, examples of which are 
indicated in Figure 2, where now the solid lines indicate the 
7r-network and the dashed lines are appended to carbene centers, 

* Research supported by the Robert A. Welch Foundation of Houston, TX, 
and by a grant for supercomputer useage from Florida State University. 

'Present address: Quantum Theory Project, University of Florida, 
Gainesville, FL. 

with a (singly occupied) dangling a-orbital. Thus structure 2 of 
Figure 2 represents the species of Figure 1. Several of the species 
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Figure 1. The cr-electron network in an example species, with one 
(unshown) x-electron on each C atom. 

of Figure 2 are known experimentally and are observed to exhibit 
a variety of ground-state spins. 

The predictions in this paper of ground-state spins are made 
from three points of view. The associated models are a covalent 
VB model, a Huckel-type MO model, and a PPP-type model. For 
each of these three points of view a matter of crucial importance 
is the manner of exchange coupling and particularly the signs of 
exchange "parameters". Hence this topic is addressed in section 
II. In sections M - V the three models are described, and cor
responding predictive methods are noted. In section VI predictions 
for the ground-state spin are compared to each other and (when 
available) to experiment. For systems with alternant x-networks, 
an especially simple to apply VB theorem seems to be fairly 
reliable. Section VII presents some quantitative VB and PPP-type 
results for systems with about 9 or fewer x-centers. 

II. Exchange Coupling 
In systems with singly occupied orbitals exchange coupling can 

arise. The relevant singly occupied orbitals may be (possibly 
nonorthogonal) atomic orbitals (as in VB approaches) or (possibly 
degenerate) MO's. The exchange coupling interaction between 
two such orbitals, say i and j , may24 be expressed as 

^ij(ij) (2.1) 

where (ij) is an exchange operator and /y is an exchange parameter 
(measuring the strength of the interaction). Here we take (ij) 
to permute spin indices for orbitals i and j (so that via the Dirac 
identity this could be expressed as 25^Sj + ' /2 , if so wished). 

Different low-order formulas apply for J^, depending on whether 
or not the orbitals are orthogonal. For the case of atomic-like 
orthogonal orbitals, the inclusion of the effects of ionic configu
rations is crucial and leads to an expression:25 

where /3y is a (Huckel-type) resonance parameter (or integral), 
ATjj is a (direct) exchange integral (which is necessarily nonne-
gative), and U is a (Hubbard-type) electron-repulsion parameter 
(expressing the relative repulsion of two electrons both in the same 
orbital). For the case of atomic-like nonorthogonal orbitals, an 
alternative derivation26 identifies dominant contributions to arise 
via covalent configurations and yields a quite different expression: 

Sy Qj - -Ky 
J'i ~ j _ s 2 = Si> C'J ~ Ki> ^ 2 ' 3 ) 

where Sy is the overlap integral, ATy is the (direct) exchange 
integral, and Cy is a (nonnegative) Coulomb parameter (or in
tegral). Notably both (2.2) and (2.3) express /y as the difference 
between two nonnegative terms. 

III. Valence-Bond (VB) Model 
The simple VB model is defined on the space of covalent 

structures with each of the singly occupied atomic orbitals having 
a single electron with either spin up or down. As indicated in 
section II, this leads to a model Hamiltonian:27 

(23) Trozzolo, A. M.; Murray, R. W.; Smolinski, G.; Yager, W. A.; 
Wasserman, E. / . Am. Chem. Soc. 1963, 85, 2526. 

(24) See, e.g., Simpson, W. T. Theories of Electrons in Molecules; Pren
tice-Hall: Englewood Cliffs, NJ, 1962. 

(25) Buleavski, L. N. Zh. Eksp. Teor. Fiz. 1966, 51, 230 [Engl. Transl.: 
Sov. Phys. JETP 1967, 24, 154]. 

(26) See, e.g., Simpson, W. T. J. Chem. Phys. 19S6, 25, 1124. 

H = £./ij(ij) + constant (3.1) 

where the chemical structure of the molecule is embodied in the 
choice of the exchange parameters /y. More simply the /y are 
taken to exhibit but few values, say: /y = J,T if i and j are for 
neighboring x-orbitals; J^ = J„ if i and j are a <r,x-pair of orbitals 
on the same (carbene center); and /y = 0 otherwise. It is a crucial 
point that JTT and Jar may differ (rather substantially), as may 
be seen on considering either of the /y formulas of section II. Both 
formulas express J„ as the difference of two positive terms, the 
first of which dominates; thus J„ is antiferromagnetically signed 
(i.e., >0 for the present sign convention) favoring singlet spin 
pairing. For the other nonzero case, of / „ , the two orbitals are 
orthogonal by symmetry so that Sy = /3% = 0; thus Jcr - -K^ then 
is ferromagnetically signed, favoring a triplet spin alignment. 
Though Krr is quite small in comparison to JT„ (or C„ as in (2.3)), 
the exchange integral K„ is between two orbitals on the same 
center and as a consequence should be somewhat larger than KTT. 
As a rough guess we take 

Jn/J„ £ -1 (3.2) 

In the inorganic literature28 just such arguments are widely dis
cussed for models as in (3.1) (termed Heisenberg models). 

Sometimes consequences of the VB model may be easily made 
without recourse to quantitative calculations. In particular there 
are theorems17,18 for a few ground-state properties, whenever the 
system is such that the (singly occupied) orbitals can be partitioned 
into two (disjoint) sets A and B such that /y < 0 only if i and 
j are in the same set. Then the ground-state spin is 

SVB = ||A| - |B| |/2 (3.3) 

where |A| and |B| are the orders of A and B. (A final point that 
the splitting to the next higher spin state is nonzero, holds under 
mild conditions, met here.) In fact Itoh's x-alternants2 satisfy 
this condition: the x-orbitals are divided into "starred" and 
"unstarred" sets as usual (with sites of one set bonded only to sites 
of the other set), and then each nonbonded cr-orbital is placed into 
the same set as the x-orbital on the same center. 

IV. Huckel Molecular-Orbital (MO) Model 
Most simply this approach utilizes the Huckel model. First 

one locates all the nonbonding x-MO's, as is readily done by 
hand.29 In the Huckel approximation these orbitals do not couple 
to the (T-orbitals, so dangling <r-bonds are grouped with the non-
bonding MO's. Next each nonbonding MO is given an appropriate 
number of electrons (here one to each MO). Finally one proceeds 
beyond the simple (one-electron) model to include "exchange" 
couplings or, in a more formal description, applies degenerate 
perturbation theory to the zero-order Huckel-model eigenspace 
of determinants with singly occupied nonbonding MO's of various 
possible spin alignments. The result (in low order) is an effective 
Hamiltonian with interactions as in (2.1), with i and j now being 
labels for nonbonding MO's. In first order, the formulas for /y 
are like those of (2.2) and (2.3), but since the orbitals are ei-
genfunctions to the one-electron system Hamiltonian, they are 
now orthogonal (i.e., the Sy = 0) and the one-electron couplings 
vanish (i.e., the /3y = 0). Thus one anticipates all the J^ = -K^ 
< 0, which is the Hund's rule result. Thence one makes the ground 
state spin prediction 

•SHHMO = NNBMO/2 (4.1) 

where AfNBMO is the total number of nonbonding MO's. 
In a more careful version,8"10 one makes a further check on the 

applicability of Hund's rule. This entails the realization that in 

(27) Usually the VB model for conjugated hydrocarbons has been ex
pressed otherwise, but the equivalence to the form (3.1) has long been noted, 
e.g., by Simpson13 or perhaps first by Van Vleck, J. H.; Sherman, A. Rev. 
Mod. Phys. 1935, 7, 167. 

(28) See, e.g., Kahn, O.; Briat, B. J. Chem. Soc, Faraday Trans. II1976, 
72, 268. 

(29) (a) Longuet-Higgins, H. C. J. Chem. Phys. 1950,18, 265. (b) Dewar, 
M. J. S. J. Am. Chem. Soc. 1952, 74, 3345. (c) Zivkovic, T. P. Croat. Chem. 
Acta 197'4, 44, 351. 
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•electrons (located by dotted lines). Figure 2. A sampling of ^--conjugated hydrocarbons with nonbonded a-

our preceding discussion one should check to see if ATy > O (noting 
it is necessarily nonnegative), for if K^ - O (or is exceedingly small) 
one should proceed to seek higher order (degenerate-perturba
tion-theoretic) corrections to the J^. Indeed if there is little 
differential overlap between orbitals i and j , then ATy a O. Thus8'9 

if the ith and jth nonbonding MO's can be chosen localized on 
disjoint sets of centers, then ATy « O. Further it seems to be8 a 
general rule that the higher order corrections are positive, so that 
if K1J«» O, then /y > O. However, in the present situation there 
is an important exception: the /y coupling between a a- and a 
ir-orbital should remain negative even if the ir-orbital has no 
component on centers near that of the <r-orbital (since ATy > O is 
in fact the only spin-dependent coupling from a <r-orbital to any 
part of the ̂ -system, in the ordinary semiempirical schemes). Still 
if a nonbonding TT-MO has no density on the center on which a 
(7-orbital resides, then the coupling should be very small and will 
here be neglected (i.e., Jy set to O). The 7y coupling between two 
(T-orbitals should typically be of even smaller magnitude and also 
will be set to O. 

Once the exchange couplings are specified there still remains 
the problem of determining the ground state again. Most simply, 
if all the 7y are negative, then the maximum spin results, as in 
(4.1). At the other extreme, if all the /y are both positive and 
of (nearly) the same size, then the minimum spin results (singlet 
or doublet, as there are an even or odd number of electrons). If 
there are /y of opposing sign or if the /y are nonnegative but of 
variable sizes, then the result is more delicate. In some cases the 
theorem of section II can be applied. The more general case, which 
depends upon the quantitative details of the more complete 
perturbed Hamiltonian and upon the details of the degenerate 
perturbation treatment, will not be considered further in this work. 

V. Parisier-Parr-Pople-Type Models 
A model more complete than those of the preceding sections 

would include explicit electron-electron interaction (and corre
lation) over the manifold of ir-configurations. A reasonable choice 
for the interaction Hamiltonian within the 7r-system is that of a 
PPP-type (or Hubbard) model30 

H, = PZ(E11 + £ji) + Y2UZ(E1J - Ea) (5.1) 
i~j i 

where /3 is a (Hiickel-type) resonance integral and U is a relative 
on-site electron-electron repulsion parameter (given31 in terms 
of the usual Coulomb integrals as U £ 70 - 7i). The sums are 
restricted to ir-orbitals, with i~j indicating a nearest-neighbor 
pair. The £y are30,32,33 infinitesimal generators for the unitary 
group and shift an electron (of arbitrary but fixed spin) from 
orbital j to i. They may be expressed in terms of common creation 
and annihilation operators as33 

Ea = a+
iaaia + a+

ifiaifi (5.2) 

Interactions involving the dangling a-orbitals need also be con
sidered. With the neglect of direct interactions between (typically 
rather distant) carbene units the occupancy of the dangling c-
orbitals becomes fixed, since the tr,ir resonance integral is zero 

(30) See, e.g., Matsen, F. A. Ace. Chem. Res. 1978, U, 387. 
(31) (a) Longuet-Higgins, H. C; Salem, L. Proc. R. Soc. 1960, A257, 445. 

(b) Murrell, J. N.; Salem, L. / . Chem. Phys. 1961, 34, 1914. 
(32) Alexander, S. A.; Schmalz, T. G. / . Am. Chem. Soc. 1987,109, 6933. 
(33) (a) Moshinsky, M. Group Theory and The Many-Body Problem; 

Gordon and Breach: New York, 1968. (b) Paldus, J. In Lecture Notes in 
Chemistry, No. 22; Hinze, J., Ed.; Springer-Verlag: New York, 1981. 

(34) Arnold, D. R. / . Am. Chem. Soc. 1974, 96, 3708. 
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Figure 3. Illustration of the starring construction for species 4 and 5. 

1 

Figure 4. The labeling used for the (cyclobutadiene) ir-network of species 
6 and 7. 

by symmetry. For the presumed single electron occupying these 
(T-orbitals, the dominant interaction then should be that of ex
change, with the exchange parameter J^ = -K^ as seen in section 
II. Though the orbital energy of the er-orbitals differs from that 
of the T-orbitals, one need not explicitly include either in the 
Hamiltonian since they both represent conserved quantities, i.e., 
good quantum numbers. (Of course if states with different oc-
cupanices of <r- and ir-orbital spaces were to be compared, these 
orbital energies, and electron-electron interaction terms involving 
cr-orbitals, would be crucial.) Thus the relevant interaction in
volving er-orbitals currently is 

H„* —K„Y.(EwEVi - E^ (5.3) 

where the i sum is over all dangling c-orbitals and i' denotes the 
7r-orbital on the same center as i. With singly occupied <r-orbitals, 
the unitary group operator in the sum here is in fact equivalent 
to a transposition, denoted (ii') in section II. The overall PPP-type 
model then is 

H = H1, + Hn (5.4) 

which (again) is reasonable for fixed <r-orbital occupancy. 

VI. Qualitative Predictions 
The methods of the preceding sections can be used to predict 

the ground-state spins for the species in Figure 2. The VB pre
dictions are especially simple to make and are conveniently aided 
via a diagrammatic construction as in Figure 3 for species 4 and 
5. First, one places stars on alternant sites of the ir-network (as 
usual); second, one appends stars to those o--nodes that are attached 
(via a dashed bond) to a starred ir-node; and third, half the 
difference of the number of starred and unstarred nodes is taken 
to give the spin (being 0 and 1, for species 6 and 7, respectively). 

The MO considerations, though by many standards simple, are 
a little more involved. For instance, for species 6 and 7 the 
nonbonding ir-MO's are 

^a = ~FX 
1 

V2 V2 
X3* 

1 
^b = —pX2" 

V2 

1 

V~2 
X4 (6.1) 

where the Xi* are (orthogonalized) ir-orbitals for ir-centers labeled 
as in Figure 4. Since i/<a and \pb occupy disjoint sets of sites, the 
modified Hund's rule predicts 7ab > 0; however, the coupling to 
the ir-orbitals xi" (or Xj") are ferromagnetically signed or zero if 
the coefficient of the corresponding x/ (or xyT) is zero in the 
ir-MO considered. The resulting coupling patterns may be de
picted as in Figure 5, with nodes identified to nonbonding MO's 
and edges to exchange couplings, which are positive or negative 
as the edge is a solid or dashed line. Application of the theorem 
of eq 3.3 then yields respective spin predictions of 0 and 1 for 6 
and 7, in agreement with the predictions of the VB and PPP-type 
models. 

The various predictions for the species of Figure 2 are given 
in Table I. In some cases the modified Hiickel MO predictions 
(as developed in section IV) fail to predict a splitting (as when 
the nonbonding ir-MO's have no density on a carbene center); 
the different spins that are thence predicted to be degenerate are 

1 ^2 
i,a 

1 r 

Figure 5. The exchange-coupling patterns among the four nonbonding 
MO's of species 6 and 7, respectively. The f-MO's are identified by 
labels as in (6.1), while the J-MO'S are identified by the labels of their 
carbon center, as in Figure 4. 

Table I. Ground State Spin Predictions 

molecule 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

Hund 
HMO 

1 
1 
1 
1 
1 
2 
2 
1 
1 
1 
1 
2 
3 
1 
2 
2 
1 
1 
2 
3 
3 
4 

ground-state spin 

modified 
Hund HMO 

1 
0, 1 
1 
0, 1 
0,1 
0 
1 
0, 1 
0, 1 
0, 1 
1 
2 
3 
1 
2 
2 
0, 1 
0, 1 
0 
3 
3 
4 

VB 

1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
2 
3 
1 
2 
2 
0 
0 
0 
3 
3 
4 

Hubbard 
PPP 

1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
2 

expt 

1 (ref 19, 20) 

1 (ref 34) 

1 (ref 22) 
2 (ref 22) 

1 (ref 22) 

2 (ref 2) 
0 (ref 21) 

0 (ref 2) 

3 (ref 2) 
4 (ref 5) 

then listed. The MO predictions are seen to come into closer 
agreement with the VB predictions on using the modified Hund's 
rule formulation. Notably in all the cases of Table I where either 
experimental results are available or (presumably) more reliable 
computations on PPP-type models have been made agreement with 
the VB predictions is obtained. Of some note is species 17; the 
experimental value as earlier measured23 was in disagreement with 
the VB result, but more recent measurement21 now agrees with 
the VB prediction. 

VII. Quantitative CI Computations 
For VB and PPP-type models quantitative full configuration 

interaction (CI) computations can be used to predict splittings 
amongst states of various spin multiplicities. With the use of 
modern unitary group techniques, or with modern VB (or Rumer) 
basis approaches,25 and with the restriction to just a few low-lying 
eigenstates one can32 handle systems with up to nearly a million 
basis states. For the PPP-type and VB models, this currently limits 
system sizes to about TV = 12 and N = 24 electrons, respectively. 

For most of the systems of Figure 2 that fall into this com
putationally accessible category, we have carried out such 
brute-force CI computations. This has been done for a manifold 
of potentially low-lying states that correspond in number to those 
that would be obtained from the coupling of a given number n 
of singly occupied orbitals. This number n is taken to be a sum 
n = na + nT where n„ is the number of singly occupied (carbene) 
(T-orbitals and nT is the number of nonbonding Hiickel ir-MO's. 
That is, nr is the number of singly occupied ir-MO's that might 
be only weakly exchange coupled, these in turn being exchange 
coupled to the singly occupied a-orbitals, so that within the 
2"-dimensional manifold of states splittings might include the 
lowest lying ones. For n = 2 then we consider the lowest singlet 
and lowest triplet, while for n = 4 the two lowest singlets, the three 
lowest triplets and the lowest quintet are considered. The par
ameterization of the Hubbard model is taken to have 

ffl/V = Vi (7.1) 



J. Am. Chem. Soc. 1988, 110, 3405-3412 3405 

Table II. Ground-State Energies and Singlet-Triplet Splittings 

molecule 

1 
2 
3 
4 
5 
8 
9 

10 
H 

spin 

ground state 

1 
0 
1 
0 
1 
0 
1 
0 
1 

excited 

0 
1 
0 
1 
0 
1 
0 
1 
0 

in Units of J = V(<7/4) 

VB model 

ground state 

-1.000 
-4.000 
-3.903 
-6.340 
-6.266 

-10.231 
-10.121 
-10.191 
-10.496 

2 + /32 -

splitting 

+2.000 
0.438 
0.903 
0.199 
0.202 
0.215 
0.234 
0.161 
0.809 

C//4 

Hubbard model 

ground state 

-1.000 
-3.725 
-3.800 
-6.012 
-6.030 

-10.085 
-10.031 
-10.061 
-10.439 

splitting 

+2.000 
0.204 
0.769 
0.067 
0.077 
0.090 
0.040 
0.055 
1.035 

as is reasonable.30,31 

In Table II results are reported for those systems for which both 
VB and PPP-type computations were carried out. The VB cal
culations are reported with the constant of (3.1) chosen to be 

constant = -JTINr (7.2) 

where N^ is the number of ?r-bonds, and the exchange parameter 
JTT is as given by (2.2) with K^ = 0. Thence the VB- and 
Hubbard-model energies in units of JTT are more directly com
parable, as verified in Table H. For systems with 4-membered 
rings, it has long been known that there is lack of agreement of 
energies (say as embodied in Huckel's 4n + 2 rule) between the 
simple VB and Hflckel MO models, and this persists on comparing 
VB and PPP models. Thus only systems without 4-cycles have 
been reported in Table II. The ground-state energies are similar 
and, though the differences in the ground-state energies via the 
two models are comparable to the singlet-triplet splittings, these 
splittings are of the same sign for the two models. There is some 
qualitative agreement in these splittings via the two models. There 
appears to be a tendency for the VB splitting to exceed that of 
the Hubbard model, with the ratio of VB splitting to Hubbard-
model splitting increasing as the value of the splitting decreases. 

Moreover, the qualitative features here do not appear to depend 
strongly on the particular parameter values, of t/U or of Jar/J„r. 
For instance, the choice of the ratio J171/ ' / „ . of eq 3.2 as "small" 
as -0.10 has been tested, and like orderings of levels for the 
PPP-type and VB models was found. 

VIII. Conclusion 

The ground state spin predictions via the simple VB model for 
aromatic carbene species seems to be in remarkable agreement 
both with the results from brute-force computations on the PPP 
model and with the experimental evidence. Further examples in 
which the VB model predictions agree with experiment are found 
in ref 35. Moreover, the graph-theoretic construction for making 
this prediction for alternants is very simple. Some semiquantitative 
agreement is found between VB and PPP-type models. 

(35) (a) Murata, S.; Sugawara, T.; Iwamura, H. J. Am. Chem. Soc. 1987, 
109, 1266. (b) Iwamura, H.; Izuoka, A. J. Chem. Soc. Jpn. 1987,1987, 595. 
(c) Klein, D. J.; Alexander, S. A. In Graph Theory and Topology in Chem
istry; King, R. B., Rouvray, D. H., Eds.; Elsevier: Amsterdam, 1987, pp 
404-419. (d) Korshak, Y. V.; Medvedeva, T. V.; Ovchinnikov, A. A.; Spector, 
V. N. Nature (London) 1987, 326, 370. 
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Abstract: Ab initio calculations with the 6-3IG* basis set find no chemically significant stability for trimethylene radical 
cation (2). Although, with inclusion of electron correlation at the MP2 level of theory, there is apparently an energy minimum 
for a geometry of 2 with C1 symmetry, the barrier to hydrogen migration to form propene radical cation (3) is found to be 
less than 0.2 kcal/mol. At the MP2 level of theory the rearrangement of cyclopropane radical cation (1) to 3 involves conrotatory 
ring opening and passage over a transition state of C2 symmetry. After correction for zero-point energy differences, the 
transformation of 1 to 3 is computed to be exothermic by 10.3 kcal/mol and to require an activation energy of 21.9 kcal/mol. 
The importance of electron correlation for correctly calculating the relative energies of species with localized and delocalized 
wave functions is demonstrated, and the finding that, with inclusion of sufficient correlation, the (0,0) geometry of 2 is stable 
to asymmetric distortion of the C-C bond lengths is discussed. 

Observation of trimethylene radical cation (2), formed by ring 
opening of cyclopropane radical cation (1), has been claimed both 
in CF2ClCCl2F matrices1 and in the gas phase.2 Recently, 

(1) Qin, X.-Z.; Williams, F. Chem. Phys. Lett. 1984,112, 79. Qin, X.-Z.; 
Williams, F. Tetrahedron 1986, 42, 6301. 

(2) Sack, T. M.; Miller, D. L.; Gross, M. L. J. Am. Chem. Soc. 1985,107, 
6795. 

however, we3 and others4 have reported the results of ab initio 
calculations that call into question whether the irreversible opening 
of 1 to 2 is possible energetically. In this paper we describe the 
results of additional calculations which indicate that 2 can re-

(3) Hrovat, D. A.; Du, P.; Borden, W. T. Chem. Phys. Lett. 1986,123, 337. 
(4) Wayner, D. D. M.; Boyd, R. J.; Arnold, D. R. Can. J. Chem. 1985, 

63, 3283. 
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